

About Us

We have developed the first *de novo* mutation screening test for IVF embryos. This is pre-implementation genome screening for whole genome sequencing (PGT-WGS).

GenomeScreen® is a comprehensive test that screens trophectoderm biopsied IVF embryos for every genetic disease.

Executive Team

NICK MURPHY | PHD

GenEmbryomics CEO/Founder

Co-inventor of the COVID-19 Risk test and Polygenic Risk Multi-Test (Genetic Technologies). First to directly sequence the human HLA system from a single chromosome.

SANTIAGO MUNNÉ | PHD

Executive Director & Senior Advisor

PhD in Human Genetics (University of Pittsburgh). CIO at Overture Life. Founder of: Reprogenetics, Recombine, Phosphorus, MedAnswers, Overture Life, G1 Sciences. Advisory Board (currently): Overture Life, Phosphorus, MedAnswers, Butterfly & Sama.

MONICA PETICA | MSC

Chief Clinical Officer

Clinical leader, quality management & curation.

Monash IVF, Victorian Clinical Genetics Services (VCGS), Australian Forensic Police Services (Victoria, South Australia, Northern Territory)

The Problem

De novo mutations
spontaneously occurring at
fertilization accounts for
over 4,525 genetic diseases that
are routinely missed by
standard PGT. These diseases
destroy innumerable lives and
lead to massive costs to the
healthcare system.

300,000

IVF cycles in USA alone

50%

Patients pay for tests of single conditions

4500+

Genetic conditions which could occur

Solution

GENOMESCREEN®

- World first to screen for 4500+ genetic conditions at the same cost of doing a single test.
- The 50% of IVF clients already paying for screening of 1 genetic condition can pay the same amount for 4500+ conditions.

Test Overview

DNA COLLECTED

IVF Clinic collects the DNA samples from parent donors and the embryo trophectoderm cells and sends the samples to the lab

DNA SEQUENCED

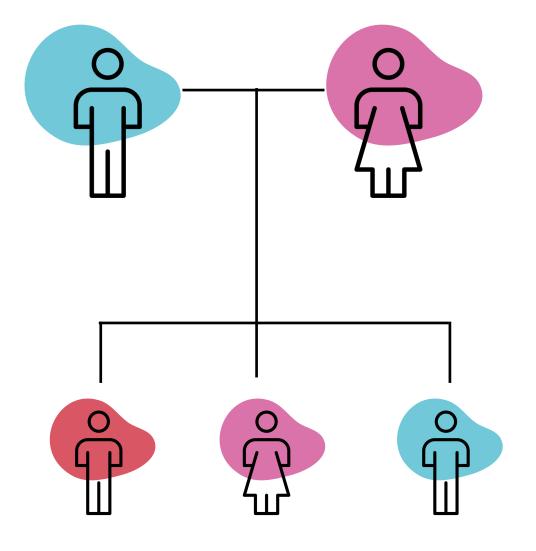
Lab provides whole genome sequencing for the DNA samples and uploads the FASTQ files for each sample to the GenEmbryomics HIPAA compliant cloud server

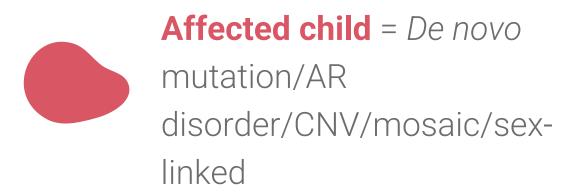
CLOUD BIOINFORMATICS

- 1. Mapping sequences into a BAM file
- 2. Short variant calling
- 3. CNV calling
- 4. Repeat Expansion calling

VARIANT CURATION

The data is curated by a variant curator and reported with a clinical geneticist.


CLINICAL REPORT



The test report is sent to IVF clinic for IVF doctor to inform patients about the genetic health of the embryo

GenomeScreen®

- The genomes of both parents are required for categorising each variant.
- Filtering is performed for false-positive base misincorporations and sequencing artefacts.
- Variants are "annotated" from >50 annotation sources, pathogenicity prediction algorithms and ACMG guidelines.
- Embryo transfer/screening
 recommendations provided based on
 severity and age of onset for fatal, disabling
 and early onset (objective) and contextual
 (subjective) pathogenicity conditions where
 patients may need ethics approval for
 screening.

ALL CLASSES OF PATHOGENIC MUTATION

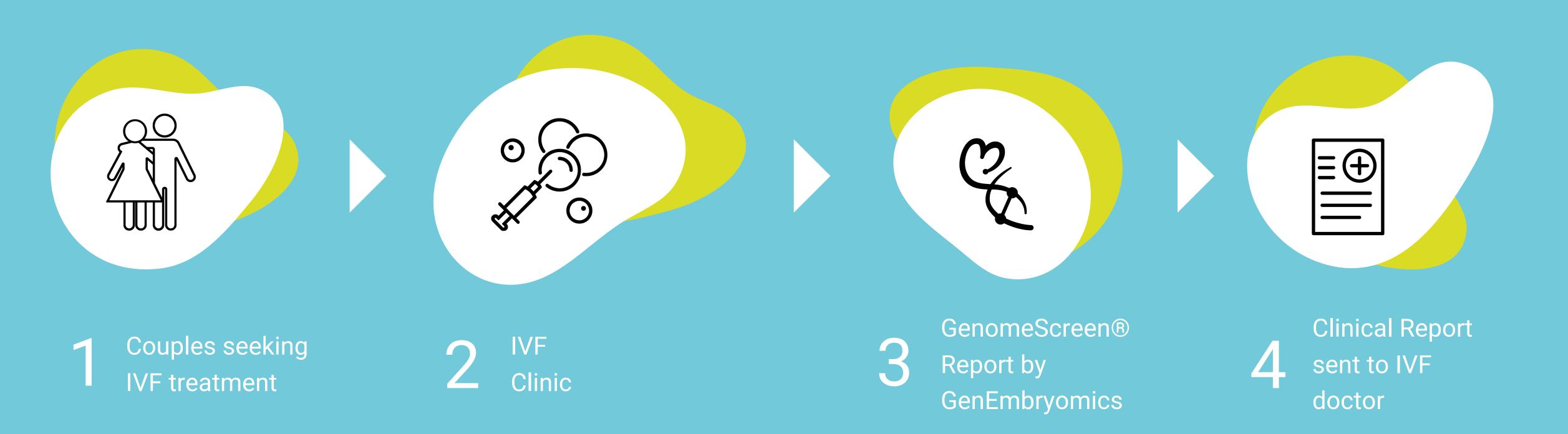
Spontaneous (de novo) mutations

Specificity	99.99%
Accuracy	99.99995760%
Sensitivity	>80% de novos detected compared to 0% with other tests
NPV	99.99999703%
False Positive Rate	0.39%
False Negative Rate	0.65%
Transmitted mutations	(>99.9999%)

SNV's, Indels, MNVs

Copy number variants

Aneuploidies & translocations & triploidy


Trinucleotide repeats (e.g. FRM1)

Mosaicism (high accuracy)

Translocations

Polygenic risk

Our Process

Embryo biopsy & parent
DNA Samples collected &
sent to the lab for whole
genome sequencing

- Clinical recommendation for embryo
- Pathogenic variants affecting embryo
- Embryo recommendation

50%

Patients pay for tests of single conditions

GenomeScreen®

For collecting and screening DNA embryo before implantation

Couplet[™]

GenomeScreen®

For collecting and screening DNA of couples

GenomeScreen Ova™

GenomeScreen®

For collecting and screening DNA of IVF Oocytes

HIGH DISEASE COVERAGE Competitor Analysis Gen Embryomics **Igenomix**° color <u>CoperGenomics</u> Nebula Genomics **LOW COST HIGH COST** (g)enomic prediction ORCHID INVITAE **%** natera

LOW DISEASE COVERAGE

GenomeScreen® vs. Competitors

	Gen Embryomics	(g)enomic prediction	CooperSurgical®	natera	Igenomix	ORCHID
4,525 genetic diseases/test						
Single mutations						
Chromosome number aneuploidy						

Global Clinical Partners LOI/MoU's **IVFs Clinics** globally Globally

Appendix C - Roadmap For Product Development

	Pł	HASE	1: P(OC	PHASE 2: BETA SYSTEM														PHASE 3: COMMERCIALISATION																
	2	2022			2023 2024 2025					2025 2026 2								2027 2028						2029					2030						
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q ²
Ger	nome	eScree	n Rollo	out																															
				IPC																															
							1	Whole	e Gen	ome (Carrie	er Scre	een																						
																Ge	nome	eBank																	
									V	/hole	hole Genome Ooccyte																								

